Exponential Stability of Discrete-Time Hopfield Neural Networks
نویسندگان
چکیده
In this paper, some sufficient conditions for the local and global exponential stability of the discrete-time Hopfield neural networks with general activation functions are derived, which generalize those existing results. By means of M-matrix theory and some inequality analysis techniques, the exponential convergence rate of the neural networks to the equilibrium is estimated, and for the local exponential stability, the basin of attraction of the stable equilibrium is also characterized. @ 2004 Elsevier Ltd. All rights reserved. K e y w o r d s D i s c r e t e t i m e Hopfield neural networks, Equilibrium, Global exponential stability, Exponential convergence rate, Local exponential stability. 1. I N T R O D U C T I O N The well-known Hopfield neural network and its variations (delayed Hopfield neural networks, discrete-time Hopfield neural networks) have attracted many researchers' attention [1-12] since Hopfield's pioneering work [1], and have been successfully applied to many fields, such as intelligent control, optimization solvers, and associative memories (or pattern recognition), etc. In those applications, the stability of the neural networks is crucial and needs to be prescribed before designing a powerful network model with a fast convergence ability. Especially in associative memories, each particular pattern is stored in the networks as an equilibrium, the stability of the associated equilibrium shows the networks have the ability to retrieve the related pattern. Usually, in associative memory neural networks, one expects the networks can store as many patterns as possible. In that sense, information about the basin of attraction of each stable equilibrium *Author to whom all correspondence should be addressed. Research supported by National Natural Science Foundation of P.R. China (10371034), by the Foundation for University Excellent Teacher by the Ministry of Education, and by the Key Project of Chinese Ministry of Education (No. [2002178), and by the Science Foundation of Hunan University. 0898-1221/04/$ see front matter @ 2004 Elsevier Ltd. All rights reserved. doi: 10.1016/j.camwa.2004.04.010 Typeset by A.A, CS-TEX
منابع مشابه
On Global Exponential Stability of Discrete-Time Hopfield Neural Networks with Variable Delays
Global exponential stability of a class of discrete-time Hopfield neural networks with variable delays is considered. By making use of a difference inequality, a new global exponential stability result is provided. The result only requires the delay to be bounded. For this reason, the result is milder than those presented in the earlier references. Furthermore, two examples are given to show th...
متن کاملA new sufficient conditions of stability for discrete time non-autonomous delayed Hopfield neural networks
In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative. ...
متن کاملExponential stability of implicit Euler, discrete-time Hopfield neural networks
The exponential stability of continuous-time Hopfield neural networks is not preserved when implemented on digital computers by means of explicit numerical methods, whereas the implicit (or backward) Euler method preserves this exponential stability under exactly the same sufficient conditions as those previously obtained for the continuous model. The proof is based on the nonlinear measure app...
متن کاملRobust exponential stability for uncertain stochastic neural networks with discrete and distributed time-varying delays
This Letter deals with the problem of delay-dependent robust exponential stability in mean square for a class of uncertain stochastic Hopfield neural networks with discrete and distributed time-varying delays. Based on Lyapunov–Krasovskii functional and the stochastic stability theory, delay-dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Because of intr...
متن کاملExistence and Global Stability of Periodic Solution for Delayed Discrete High-order Hopfield-type Neural Networks
It is well known that studies on neural dynamical systems not only involve discussion of stability property, but also involve other dynamics behaviors such as periodic oscillatory, bifurcation and chaos. In many applications, the property of periodic oscillatory solutions are of great interest. For example, the human brain has been in periodic oscillatory or chaos state, hence it is of prime im...
متن کامل